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Equation of state and transport properties of an interacting multispecies plasma:
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We present a first-principles theory of the ionization equilibrium, thermodynamics, and linear
transport properties of an interacting mixture of electrons and several species of ions and neutral
atoms, typical of a hot plasma. The thermodynamic functions are self-consistently calculated using
the density functional theory (DFT). The inputs are the nuclear charge Z, the average electron
density 7@, the temperature T, and the configurations of the ions and neutral atoms to be considered.
Ion-electron pseudopotentials and ion-ion pair potentials (including repulsive core contributions)
are derived from the DFT. The ionic structure factors are determined using the multicomponent
hypernetted chain theory. The ion-species concentrations x; are obtained through a minimization of
the total free energy F at constant volume and temperature. The average ionization Z*, the internal
energy, the pressure, and the resistivity are computed. The method is illustrated by applications to
aluminum plasma. In the calculations for expanded Al at T = 1.5 eV we find a low electron-density
range where two solutions are obtained for a given average atomic volume; the most stable has the
highest ionization. The unstable solution has an excitation energy that can reach 2.5 eV. At a higher
density, the results imply a plasma phase transition from a state with average ionization Z*=1.2 to
a state with Z*=3. We also provide calculations for a variety of expanded, compressed, and shocked
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plasmas, which are of current theoretical and experimental interest.

PACS number(s): 52.25.Kn, 61.25.Mv, 64.30.+t, 65.50.4+m

I. INTRODUCTION

The average ionization Z* is a fundamental quantity
entering most theories of liquid metals or plasmas and
is directly related to the “free” electron density 7 in the
plasma. Some physical properties depend crucially on
Z*. Typical examples of such properties are the plasma
pressure and the electrical and thermal conductivities.
The dynamic analogs of the conductivities (e.g., photo-
absorption cross sections) also involve Z* and relaxation
times closely related to those in the static conductivities.
Many experiments for probing plasmas depend on mea-
surements of the static and dynamic conductivities [1-3].
Such transport measurements could also be an indicator
of phase transitions in plasmas [4] and in metallic vapors
[5]. The ionization balance and the equation of state
(EOS) are also of great importance in astrophysical stud-
ies [6,7]. Saha theory [8] can be used to calculate the EOS
and the associated ionization balance in low density plas-
mas. Saha theory treats the thermal equilibrium between
various ideal, “isolated” atomic and ionic or molecular
species, essentially in the ground state, and an unper-
turbed uniform noninteracting electron gas. The modifi-
cations in the electronic structure induced by matter den-
sity, temperature, interactions between the ions, etc., are
not taken into account in this theory, which is restricted
to very low densities and temperatures. However, real
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low density systems are characterized by molecule for-
mation, large density fluctuations etc., and Saha theory
is in practice inapplicable. Even the “ideal” low density
theory needs to address the divergencies in the partition
functions of isolated atoms by appealing to other con-
siderations [9] before Saha theory can be implemented
[10]. While quantum cluster expansion methods [11] can
in principle be applied to take account of “nonideal” be-
havior, such methods, based on expansions about the
ideal limit, tend to be extremely inconvenient in prac-
tice, even for moderate densities, and an adequate treat-
ment of electron-electron and electron-ions interactions
remains an open problem. Thus other approaches [12,13]
to the equation of state of ion-electron systems have been
developed over the years, where intuitively reasonably
but somewhat ad hoc assumptions are used to deal with
Coulomb interactions, bound states, and hard repulsive
cores at each ion and to smoothen the discontinuities in
including the bound and continuum contributions to the
partition function.

Another approach to the calculation of the EOS is
provided by self-consistent calculations of average atoms
[14-16], which have become very popular in EOS and
opacity calculations. Models of average atoms in plas-
mas may be either restricted to a single “ion sphere” or
adapted to an atom in an infinite medium, but they are
always solved in spherical symmetry. The plasma envi-
ronment is in general modeled either by an infinite jellium
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or by appropriate boundary conditions on the “atomic
sphere.” Two important consequences result from these
approximations.

(i) The multicenter structure is not treated explicitly.
An easily tractable refinement is to build up the total
electron charge density as a superposition of single charge
densities, as done in the theory of simple metals. But
this is not suitable when the density and temperature
conditions are such that the energy gap between the con-
duction band and the outermost bound level approaches
zero. In such cases, an abrupt change in ionization, and
consequently in resistivity, is found. Such abrupt changes
can occur if there is a real phase transition in the system
and hence the theory must be free of model-dependent
artifacts to make confident predictions.

(ii) The multispecies effects on ion equilibria and trans-
port are neglected, Z* being determined from the spec-
trum and wave functions of a single “average” ion.

In this work, we retain the first approzimation of using
single-center methods and work in an appropriate regime
of density and temperature to address the second issue
and show how to include the interactions between ions,
as in simple (single-center) liquid theory, in the calcula-
tion of ionization by explicitly including the relevant ionic
species present in the plasma. The equilibrium among
these species results from the minimization of the to-
tal free energy of the system. All the ingredients of the
model are calculated a priori; the energies of the various
species are self-consistently determined for ions embed-
ded in the appropriate electron environment, the pair
interactions are deduced from the electronic structure of
these ions and the pair correlation functions are obtained
by solving the coupled hypernetted chain equations. The
formulation begins from the system Hamiltonian and the
approximations made at each step can be clearly indi-
cated.

The paper is organized as follows. In Sec. II we
present the theory of an interacting multispecies model
and explain how the quantities entering the equilibrium
equations are calculated. Applications to Al plasmas
at several densities and temperatures are presented and
compared with average atom calculations using a single
average-structure model. A detailed account of the Al
plasma at a temperature of 1.5 eV is reported in Sec.
III, where a transition between an ionized phase with Z*
~ 1.2 and the Z* = 3 phase, characteristic of a “plasma
phase transition,” is predicted to occur in a rather small
range of compressions 0.27-0.40. An unstable phase with
a weak ionization around Z* = 0.1 is found. We also re-
port more wide ranging results of the ionization Z* and
the electrical resistivity R of expanded and compressed
plasmas and along the principal shock Hugoniot curve,
using the appropriate theory in each density and tem-
perature range. These results are useful in the design of
experiments and for comparison with other methods that
use more drastic simplifications or non-first-principles
parametrizations to achieve easy “on line” computabil-
ity. Finally, concluding remarks and an assessment of the
approximations made in the present method are given in
the Conclusion, while technical issues are dealt with in
Appendixes A-C.
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II. THEORY OF DENSITY EFFECTS
AND ION-ION INTERACTIONS

The temperature 7', the nuclear charge Z, and an aver-
age electron density 7t are chosen as the input quantities
characterizing the plasma. The case of several elements
having different nuclear charges brings no difficulty, but
is dropped for simplicity. The temperature T is higher
than the critical temperature to prevent transition to
the gaseous neutral phase. Several ionic species, having
charge states Z;, are present in non-negligible concen-
trations z; in this plasma. There is no formal complica-
tion in including clusters (i.e., multicenter objects) in the
theory given here. As cluster calculations in plasmas re-
quire multicenter numerical methods, we limit ourselves
to plasmas such that single-center methods are sufficient.
The single-center assumption is consistent with the as-
sumption of integral charge states Z; = 0,1, 2,... for the
basic configurations assumed in this paper. If chemical
bonding (molecule formation) is allowed, charge can re-
side in the midbond region and integral charge states
cannot be used as a basis for describing the atomic con-
figurations. In Sec. IIIB we discuss the condition for
molecule formation and restrict the regime of application
of our calculations to ensure that our assumptions hold.
Thus we consider only simple ionic species, e.g., Al*T,
where the ionic charge Z; could be 0, 1, 2, 3, .... The
calculation of pair potentials is formally equivalent to the
calculation of binary clusters. In the present work this
is achieved in second-order perturbation theory with the
help of pseudopotentials, thus avoiding the full treatment
of two-center systems.

A. Total free energy of the plasma

In calculating the free energy of the electron-nuclei
mixture we proceed via the neutral-pseudoatom (NPA)
model already discussed in the literature [17-19]. The
total Hamiltonian of the system is initially written as
H = H,+ Hy + Hye, with H. = H? + H.. and
Hy = HY + Hyp being the contributions from the elec-
tron and nuclear subsystems. The electron-nuclear inter-
action Hpy. produces bound electronic states attached to
each nucleus to form ions with effective charge Z;. In
studying simple plasmas, i.e., systems where the bound
states are compactly associated with a single center, we
can at this stage rewrite the Hamiltonian using a descrip-
tion in terms of ions instead of bare nuclei. If the system
is in a plasma (metallic) state, there is also a distribu-
tion of “continuum” electrons, with an average density 7.
The Hamiltonian can be rewritten to explicitly bring out
a uniform electron gas term H.4 by adding and subtract-
ing a uniform density term to the total Hamiltonian and
rearranging it [20]. The uniform neutralizing background
term introduced at this stage is once again rearranged
in replacing the “ions” by “pseudoions,” which are weak
scatterers by construction. That is, the electron-ion term
in the Hamiltonian is manipulated by adding (and sub-
tracting from the total Hamiltonian) a spherical Wigner-
Seitz cavity v; in the positive background around each
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ionic center ¢. The ion, together with its cavity, forms a
weak scatterer with a Friedel sum equal to zero and con-
stitutes the NPA. Since this object is a weak scatterer
by construction, perturbation theory can be applied to
it. The construction of the NPA, with its bound and
free electron distributions for each Z;, requires the full
nonlinear self-consistent scheme of the finite temperature
density functional theory (DFT). The NPA approach as-
sumes that the effect of the cavity that is added and
subtracted can be treated by perturbation theory. When
this is not possible (e.g., as in the case of hydrogen plas-
mas) a procedure involving coupled density functional
equations (one for the ions, another for the electrons) is
needed [16]. In the case of plasmas made up of “simple
metallic ions,” the assumptions of the NPA model hold
very well for the ionization states usually encountered.
For a chosen set of ionization states Z;, the average ion-
ization Z*, the matter density p, the free electron density
7, and the ionic concentrations z; are related by

zZ*=> .2, p=mn/2". (1)

Thus, instead of starting from the matter density p, it
is convenient to take @ and T as the primary inputs to
the calculation and determine z;, Z*, and p from the
thermodynamics. We need the total free energy F as
well as its derivatives 6 F/ém, §F/6T, and 6F/ézx;.

The total free energy per ion of the plasma is

F=Fid+Feg+Fem+Fzs' (2)

The first term Fjq is the ideal ion-fluid contribution
Fiqg = —kpT |In{(2nMkT/R?*)*?p™ e} = > " z;ln =;
i

®3)

M is the nuclear mass, N is the total number of nu-
clei, and x; = N;/N is the concentration of the ith ionic
species. F.g4 is the free energy of the interacting electron
gas

Feg=2"f(n,T) = Qnf(n,T). (4)

Z* is the average number of free electrons per ion. Q
is the average atomic volume and f(7,T) is the uniform
electron gas free energy [21] per electron at density .
and temperature 7. From the definition of the electron
chemical potential u, when the average density changes
by an amount 7 we have

6F,q = Quén = Z* ubn/n. (5)

We discuss Fep,, Fys, viz., the embedding energy and the
excess free energy in the following subsections.

The third contribution Fen, to F' [Eq. (2)] is the free
energy required to “embed” the various kinds of ions in
the electron gas. Explicitly, the embedding energy F; of
ion species ¢ is defined as the free energy of the electron
gas containing the ion of species ¢ minus the free energy of
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the unperturbed electron gas but inclusive of certain cor-
rections discussed below. The theory assumes that these
ion-energy terms can be calculated independently of each
other, i.e., Fen, is a linear form Y, z;F; em. This implies
that the bound electrons are those that are sufficiently
rigid to fluctuations in the environment. Furthermore,
the conduction-electron screening charge density is, as
in a metal, taken as a superposition of the individual
screening clouds of each ion. Thus each species is calcu-
lated self-consistently by solving the Mermin-Kohn-Sham
equations [22] in an infinite jellium of density 7, for the
nucleus surrounded by a cavity v; of volume Q; = Z; /7
and radius R; such that 4wR37n/3 = Z;. Thus

vi(r) = Al6(0) — O(r — Ry)]. (6)

Here 6(z) is the Heaviside step function. The “nucleus
plus cavity plus its electronic cloud” constitutes the NPA,
which has been discussed in several contexts [17,18]. Such
self-consistent calculations of the free energy and internal
energy of an ion embedded in an electron gas surrounded
by a cavity have been described in previous work [19,18].
The free energy of the NPA, calculated in the “external
potential”

Vext,i(r) = =Zi/r + vi(r') ® [r — /|7 (7)

and in the presence of the electron gas is F;. The symbol
® means, as usual, integration in all space r’. We do not
reproduce here all the details of this standard calculation.
However, we remark that we replace the noninteracting
entropy of the bound “Kohn-Sham” electrons calculated
in the DFT model, namely,

—kg [ngIn(cy) + (94 — 1g) In(1 — ¢q)], g = ng/g9q (8)

for shell ¢ with degeneracy g, and population ng, by its
exact form derived from the statistical weight for shell g:

kg Infge!/{nq!(9q — 1q)'}]- 9)

With this correction we obtain F; defined as the free en-
ergy of the electron gas containing the ion minus the free
energy of the unperturbed electron gas. To obtain the
total embedding energy, one has to correct for the cavity
surrounding the ion, as in Ref. [19]. We first define the
total Coulomb potential V;(r) associated with the ion 3.
If An;(r) is the total displaced electron charge distribu-
tion resulting from the self-consistent DFT calculation
for the ion of species 7 in the external potential Vex,
then

Vi(r) = —=Zi/r + [ti(*") + Ani(7)] ® |r — 2|71 (10)
The cavity v;(r) around each ion implies a charge deficit

1:(r) = m — v;(r). Thus the cavity correction L;, which
has to be added to Fj, is now easily shown to be

L = m(r) @ Vi(r) = 5m(r) @ =00 ® (') — ma(r)]

(11)

Here m;(r) is the electron density displacement due



52 EQUATION OF STATE AND TRANSPORT PROPERTIES OF AN . .. 5355

to the cavity »; and is of the form m;(q) =
—v;(q)v(q)I(g, ), with v(g) = 47/q? and II(q,7) the
interacting electron gas response function at the density
7. Hence, finally,

m= Z 1'iFi,em = Z a:,,(F,, + L,;). (12)
i 7

In calculating 6F;/ém we define f; = néF;/én and the
Mermin-Kohn-Sham variational property yields

fi=—mni(r) ® Vi(r) —

We also define I; = néL;/ém for variations arising from
the cavity correction. An explicit form for I; is given in
Appendix A. Hence, finally, we have

8Fom = Zmi(f,- + 1;)é6m/m. (14)

Z:Vi(R;). (13)

The quantity (f; + ;) is the embedding contribution to
the electron chemical potential p.

B. Excess free energy of the fluid

The displaced electron density An;(r) around the ion
of species ¢ referred to in Eq. (10) includes a bound
contribution np ;(r) and a continuum (free) contribution
Ang;(r). We have shown in previous papers [23] how
to extract pseudopotentials w;(g) that, by construction,
reproduce the full nonlinear self-consistent free density
Ang ;(r) in linear response theory. This method works
for ions that have the character of simple metallic ions,
but it is not suitable for Ht or for transition metal
ions. The pseudopotentials may be used to construct the
metallic part of the pair interactions between the ions

$i3(r) = (2m) 2 / (g, m)wi(q)w;(g) exp(ia - r)da,
(15)

where II(g,7) is the finite-temperature interacting elec-
tron response function. A repulsive contribution ¢;; de-
scribed in Appendix B must be added to the metallic
contribution to obtain the total pair interaction

Yij = Gij+ij. (16)

A contribution to the pair potential due to core polariza-
tion effects can also be added [24], but this is not impor-
tant in the plasmas considered here. The ionic structure
of the fluid is then calculated by solving suitable coupled
integral equations, e.g., hypernetted chain (HNC) equa-
tions modified to include bridge terms where necessary.
The simple HNC scheme is sufficient for the plasmas con-
sidered here and has the advantage of not needing a cou-
pling constant integration to obtain the free energy. The
pair interaction free energy Fi,, often called the “excess
free energy,” is given in the coupled HNC scheme by [25]

1
Foy = Zwiijij - % /F(Q;P)dq’ (17)
i,

with 8 = 1/kgT and

Fy; = E% /dr[gij(ln gij + Bvi;) — hij (1 + $hij)], (18)

F(g;p) = (2m)~*{In det[I + pH] — Tr[pH]}.  (19)
Here I is the unit matrix and H has elements H;; =
VZi hij/T;, where h;; = g;; — 1 involves the pair distri-
bution function g;; between the ionic species 7 and j.

The excess free energy F, is stationary with respect to
all the h;; at constant p and x;. If a change is made in 7,
the resulting change in F,, comes only from the changes
in 9;;. As the core-core repulsion ¢;; is very rigid (i.e.,
it is assumed to be insensitive to small changes in the
ion environment or in ), only ¢;; has to be considered.
From the definition of F;; [Eq. (18)] and ¢;; [Eq. (15)],
it is clear that one can write for a change 67

JF;" = Z$,$Jf”(6ﬁ/ﬁ), (20)
with
fij = 2(2 ) / drgi; / dqan(q’ wi(q)w;(q)
x exp(iq - r). (21)

The temperature dependence of the response function is
not written for simplicity. The density dependence of
the pseudopotentials is weak enough to be neglected in
the calculation of f;;. The quantities f;; are corrections
to the electron chemical potential arising from ton-ion
interaction effects.

C. Minimization of the free energy

The total free energy F' of the system must be mini-
mized with respect to the concentrations z;, at constant
volume Q2 (or matter density p). The input quantity in
our calculations is not the matter density p, but the elec-
tron density . The relation between these densities is
given in Eq. (1). Hence the constraint §p = 0 reads

— ) Zisz; = 0. (22)
Since ), z; = 1, we also have the constraint
> bz =o. (23)

These two constraints are included in the minimization
via Lagrange multipliers A and 6. A variation of the x;
in Eq. (17) gives

6F,, = Z 2 Z-’EjFij + K; | 6z, (24)
i J

with
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K; = _ﬁkBT/dq[cu(q) — hi(q)].

The ¢;; are the diagonal direct correlation functions in
the HNC approximation. Finally, the total variation of
the free energy F' is of the form

§F =) Fi°"z; + Fl**(6n/m) = 0,

(25)

(26)
Fior = kgT(lnz; +1)+ &+ AZ; — 0,
Felec — Z*(/_L-f-’f]—/\),
& :Fi+Li+2Z$jFij+Kia
J

From Eq. (26) the ion concentrations z; that minimize
the total free energy are given by

z; = A exp[—B(& + \Z;)], (27)
where A is chosen such that ), z; = 1 and
A=p+n. (28)

We note that A is the electron chemical potential inclusive
of the effect of the ion-electron and ion-ion interactions.
Such corrections to the chemical potential contribute to
effects loosely called “continuum lowering.” The effect of
the electron-electron interactions on the electron chemi-
cal potential [cf. Eq. (5)] is already contained in pu.

D. Calculation of other thermodynamic functions

When the concentrations z; and other relevant quan-
tities are determined, the calculation of the thermody-
namic functions follows. As an example, we give the
expression for the pressure P of the system. Thus differ-
entiating the free energy with respect to volume

PQ=k3T+Pe+pem+Pion-iona (29)
P, = Z*ﬁdf(_n) + Z*n,
v dn
Pem = Zmsza
kT

Pion—ion = %: wzm]Fz] + W F(q, p)dq
Here kpT is the ideal gas ionic contribution, while b.,
proportional to Z*, is the pressure contribution of the
interacting uniform electron gas whose free energy per
electron is f(®) plus a term involving 71, which is a cor-
rection to the electron gas pressure due to “continuum
lowering effects.” The term Pen is a pure “embedding”
contribution, while the two terms in Pigp-jon arise from
the embedded ion-ion interactions.

E. Calculation of the electrical resistivity

The simplest plasma resistivity calculations use the
Spitzer formula, which is in many ways like Saha theory,
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in using many simplifying assumptions. Fully ionized hy-
drogen plasmas in the weak electron-ion coupling regime
can be treated following Ichimaru and Tanaka’s work [26].
Lee and More, Cauble and Rozmus, and Rinker [27] have
presented resistivity calculations for more general plas-
mas. An objective of some of these models is the ease
of on line calculation. Since we are interested in a mi-
croscopic approach we use the extension of the Ziman
formula [28,29] to finite temperatures. We use the elastic
scattering cross section Y (gq) expressed in terms of the
local pseudopotentials w(q) and the HNC structure fac-
tors S(g). The pseudopotentials w(q) have already been
encountered in Eq. (15). The resistivity is given by

oo qdm
rR=_l Ll 1 / g ¥ene) / *(g)dg, (30)

e?3m Z*m de

with fgp(e) the Fermi-Dirac occupation number for a
level of energy €. The upper limit g, for the ¢ integration
is (2/k)v/2me. In the case of local pseudopotentials, this
expression is readily transformed into

_h1 1
T e23n Z*m

x /Ooo (1 + exp{Ble(q)/4 — n]}) '¢°T(g)dg, (31)

with
e(q) = (:i)l ,
E(q) = Z(miwj)l/zsij[wi(Q)/Zﬂf(Q)][wj(q)/ZWg(Q)],

Si; = 6i5 + p(ziz;)Y%hi;(q).

The cross section X(g) involves the electron gas dielec-
tric function £(q) defined in Appendix A. The Ziman
formulation treats only elastic scattering processes. The
inelastic effects are small except at very high tempera-
tures. The full T-matrix form discussed in our previous
studies [29] is required only at sufficiently high tempera-
tures. Some examples of the differences between a pseu-
dopotential approach and a T-matrix approach will be
given in Sec. III. The “Born-approximation-like” form
used in Eq. (31) is valid because the pseudopotentials
w(q) have been constructed to be weak and is well estab-
lished in the context of simple liquid metals. This form
of the Ziman formula does not contain corrections aris-
ing from the modifications to the continuum density of
states wherein the electron mass m gets replaced by a k-
dependent effective mass m*(k) and other effects due to
electron localization effects. While the thermodynamic
properties are less sensitive to such effects, they can be
important in quantitative predictions of transport coeffi-
cients. Thus the results obtained from Eq. (31) should be
considered as a good first approximation that needs fur-
ther corrections depending on specific experimental con-
ditions. The following remarks should be noted.

(i) The Ziman formula corresponds to the simplest
variational solution of a transport equation. Higher-order
terms (arising from other basis functions) become impor-
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tant in certain problems.

(ii) If the neutral-pseudoatom construction that in-
volves the use of a cavity surrounding the scatterer ion
(e.g., AI3%), is not used, then the resistivity of the (A13+)
fluid is found to grossly disagree with experiment (e.g., in
molten aluminum fluid), while the NPA approach gives
excellent agreement in the case of simple metallic systems
such as Al13t.

(iii) The resistivity calculated from the Ziman formula
can be rewritten to define an “electron-ion” collision time
Te-i. Such a collision time defines a “transport” time that
is different from the collision time that enters into energy
relaxation.

The calculation of some of the other linear transport
properties (e.g., thermal conductivity) follows in a simple
manner and will not be considered here.

III. APPLICATION TO ALUMINUM PLASMAS

Aluminum plasmas provide both experimental and
theoretical material for plasma studies. An aluminum
target shocked by a laser pulse can generate a compressed
hot plasma, which finally escapes in a plume consisting
of an expanding plasma. The theoretical infrastructure
needed for the interpretation of such experiments needs
to be built up, within the equilibrium, Hugoniot, and
nonequilibrium contexts. We also note that the phase
diagram and the resistivity of expanded metal vapors
near the critical point have attracted considerable at-
tention [5] of experiments using more traditional tech-
niques. Such metal vapors contain many neutral (and
charged) clusters and fall somewhat outside the present
study where we limit ourselves to single-center DFT cal-
culations. That is, we consider only simple Al plasmas
containing no stable ionic molecules (e.g., AIZ* or Al,).
In the expanded plasma regime we consider three tem-
peratures, viz., 1.5 eV, 5 eV, and 10 eV. At 1.5 eV it was
necessary to study the phase equilibrium among three
phases, viz., A, containing Al**, Z; = 0,1, 2,3, together
with B, containing Al*%, Z; = 1,2,3, and C, containing
only Z; = 3. At 1.5 eV there is a region of coexistence
between phases B and C that involves a phase transition
in the plasma state reminiscent of metal-insulator tran-
sitions found in expanded metal vapors. At 5 eV and
10 eV there is no longer a coexistence region between
phases B and C. The high density equilibrium regime,
up to a compression of about 3, as well as the behav-
ior along the standard shock Hugoniot can be treated
quite well by DFT-average-atom models with Z* = 3
and we present results for those regimes as well. This
numerical work has been motivated by the need to test
simplified ionization and conductivity models, which are
more approximate but computationally simpler, and for
the design and interpretation of laser-pulse experiments
in these regimes.

A. Expanded plasma regime

Our calculations provide an opportunity to test the fre-
quently used average-atom (AA) models, which do not
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contain the effects of ion-ion interactions and electronic
configuration effects on the degree of ionization and re-
lated properties. Another shortcoming of AA models is
that there exists a minimum density below which the
numerical calculation becomes unstable for open shell
atoms in jellium. The reason for the instability is the
following. Let us consider Al at zero temperature and
assume that, at a given iteration of the Kohn-Sham po-
tential, the 3p level exists (as in the free atom). Then the
average-atom—DFT scheme with a standard local den-
sity exchange-correlation functional requires us to fill this
level with six electrons, leading to the configuration of
an Al®t ion. Thus the number of screening electrons
in the displaced density of the scattering states must be
5. When the average free electron density is very low,
this situation becomes highly unstable [30] and no self-
consistent solution can be obtained. When the average
structure description is abandoned and replaced with a
treatment of distinct species, the number of electrons in
the scattering states for the important configurations is
much smaller, so that the numerical process is found to
be stable. For the conditions of this study, at T' =1.5
eV we need to treat the species Al°, AI'*, Al?**, and
AI3*, but no stable clusters (e.g., Aly) were needed, as
discussed below. First we describe the determination of
the density regime where the Al; molecule does not exist.

B. Existence of Al,, molecules (n > 2) in a plasma

The free Al, molecule has a binding energy of 1.55
eV and a bond length R = 4.66 a.u. (3% state) [31].
Detailed experimental information on molecular clusters
Al,, n > 2, does not exist. Several theoretical efforts for
treating Al, in vacuum have been reported [32,33] for n
= 2-13. Bauschlicher et al. [32] found in their ab ini-
tio calculations using correlated wave functions that the
maximum value of the binding energy per atom is 1.47
eV for n = 6, with a bond length R = 5.24 a.u., close
to the interatomic distance in bulk metallic Al. More re-
cently Jones [33] found that the binding.-energy per atom
in Al,, clusters increases quasiregularly with n towards a
value close to the cohesive energy of an atom in metallic
Al at normal density. Although the binding energies for
n = 6 calculated by these different authors do not agree,
the results suggest that the nature of binding remains
the same when going from small clusters to the metallic
solid. Only the strength of this binding is affected.

In the free molecular Aly, the binding energy curve is
the negative of the pair potential. But when the number
of atoms in the cluster increases, the cohesive energy con-
sists of a contribution depending on the average electron
density and a contribution arising from the pair poten-
tials. In fact, stabilized jellium models [34] attempt to
capture most of the stabilization via a suitable “electron
gaslike” model. Thus metallic binding does not require a
strongly attractive pair potential, unlike molecular bind-
ing. Returning to our present study, we assume that sta-
ble molecular clusters cannot exist in an electron gas at
zero temperature if the pair potential is positive for a sep-
aration R equal to the bond length of the free molecule.
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Let us consider the binding energy
D(R,n) = £(oco0,n) — E(R, 7). (32)

Here £(R,7) denotes the energy of the molecule in the
electron gas at electron density 7, when the interatomic
distance is R. In Appendix C we describe an approxi-
mate method for estimating the change §D in D due to
embedding Al; in an electron gas with density n:

§D(R,7) = D(R,7) — D(R,0). (33)

We use a model that, when applied to the embedding
of the Hy molecule, is found to give good agreement [35]
with more fundamental calculations. Taking [32] D(R, 0)
= 3 eV approximately, we determine the “critical” den-
sity meri¢ for which d D reaches the value —3 eV. As dis-
cussed in Appendix C, we have calculated D at the
equilibrium distance of the free molecule for various elec-
tron densities and found that this quantity reaches —3
eV around 7 = 0.0008 a.u., that is, for a density 32 times
smaller than the normal metallic electron density no of
Al (i.e., r, =2.07 a.u.). We conclude that, at zero tem-
perature, one can expect that two Al atoms will not form
a stable molecule if the electron density is larger than a
critical density ncrit, which is of about n9/32. For higher
temperatures, the binding energy is certainly smaller so
that the formation of a stable molecule is even less prob-
able.

C. Results
1. T =1.5 eV

We have done calculations in aluminum for illustrating
the model described in Sec. II. The lowest temperature
considered is T' = 1.5 eV, well above the critical temper-
ature, which is estimated [36] to be T, = 0.68 eV. The
reported [36] critical matter density is 0.73 and corre-
sponds to a compression p./p = 0.27. In Tables I-III we
show the results, namely, embedding free energies, em-
bedding internal energies, and eigenvalues for the outer-
most electrons, obtained for the dominant configurations.
We see that the 3p level does not exist for electron densi-
ties higher than ny/16, so that neutral species disappear
above this density. As in DFT calculations for average
atoms using a single structure with average ionic charge
Z* (average-structure model), there are ranges of densi-
ties where a bound level delocalizes and extends outside
the average volume that can be attributed to each atom.
In the range of densities where the delocalization occurs,
the simple metal picture loses its meaning, due to the
existence of shallow states that, although they do not
form stable clusters, are weakly bound to several ions.
Such states are expected to form when sharp features ex-
ist in the density of states of the “continuous” spectrum.
In these density ranges, pair potentials cannot be con-
structed and we are not able to predict the structure of
the fluid within the scheme used in this work. This is
the case for n¢/32 < @ < ng/16 (delocalization of the
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TABLE I. Embedding free energy Fj;, internal energy E;,
and eigenvalues €s3s, €3p, for the charge states Z; that exist
at selected electron densities @ in an Al plasma at 7" = 1.5
eV. Energies are in rydbergs. The density 7 is given as a
fraction of the normal density no = 0.027 a.u. (r, = 2.07 a.u.)
of electrons in solid Al. Levels with negligible occupation
are marked with an asterisk while the ellipsis indicates the
absence of the charge state.

T =1.5eV Z; =0 Z;=1 Z; =2 Z; =3
7= (no/64)
—F; 482.7926 482.3950
—E; 482.6066 482.3877
—€3s 0.4167 0.5540
—€3p 0.0576 0.1517
n= (’no/32)
—F; 482.7114 482.3850 481.6377
—FE; 482.5018 482.3653 481.5043
—€3s 0.3822 0.4649 0.6967
—€3p 0.0329 0.0760" 0.2559*
7 = (no/16)
—F; cee 482.7017 482.2269
—E; cee 482.6808 482.1585
—€3s 0.1750 0.2560
n = (no/8)
—F; cee 482.7659 482.3029 481.6261
—E; cee 482.7212 482.1879 481.6255
—€3s 0.1033 0.1565 0.2268
n= (no/15)
_F’i e e ves 482.8144
—Ei cee «es cee 482.7998
n = no
_Fi .o cos cen 483‘0078
_E; 482.9917

3p level) and for ng/4 < @ < mo/1.5 (delocalization of
the 3s level). This appears in Fig. 1, where the to-
tal free energy of the fluid is plotted versus compression.
The corresponding numbers are reported in Table III. In
Fig. 1, we see three solid curves A, B, and C. Curve A
corresponds to hypothetical states of the fluid made of
a mixture of atomic (i.e., neutral Al) and ionic species
only, with no molecules. These states are hypothetical
because the discussion of Sec. IIIB shows that molec-

TABLE II. Compression p/po, average ionization Z*, and
composition zo, Z1, 2, 3 calculated in the present theory, for
Alat T = 1.5eV. If z; is given as 0.0000, then z; < 0.5x 1074,
The ellipsis implies the absence of the charge state Z;.

7/no p/po z* Zo z1 T2 z3
1/64 0.348 0.135 0.865 0.130 0.000 0.000
1/32 0.844 0.111 0.889 0.111 0.000 0.000
1/16 0.159 1.176 <. 0.824 0.176 0.000
1/8 0.312 1.202 0.804 0.188 0.007
1/4 0.507 1.479 0.614 0.294 0.092
1/1.5 0.667 3.000 oo cee 1.000
1 1.000 3.000 1.000
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TABLE III. Compression p/po, total Helmholtz energy F,
Gibbs energy G, internal energy F, total pressure P (X atomic
volume ), and electrical resistivity R, for Al plasma at
T = 1.5 eV. The energies are in Ry/atom, while R is in u$2 cm.

n/no p/po —F —480 —G—480 —E—480 PQ R
1/64 0.348  4.435 4.059 2.325  0.376 887
1/32 0.844  3.770 2.611 1.823  1.159 1000
1/16 0.159  4.818 4.648 2.449  0.170 2173
1/8 0.312  4.688 4.438 2.447  0.250 802
1/4 0507  4.469 3.990 2.283  0.479 335
1/1.5 0.667  4.638 4.225 2.635  0.383 71.5
1 1.000  4.490 3.882 2.609  0.608 35.3

ular states are likely to exist for the electron densities
involved (@ < Merit < Mo/32). Curve B corresponds to
electron densities n9/16 < @ < mng/4, where the fluid is
a mixture of Z; = 1, 2, and 3 ionic species, but with no
neutral Al atoms. Molecular species are improbable at
these electron densities so that the fluid states discussed
here may really exist. The calculations show that they
are more stable (by 2.5 eV) than the hypothetical states
with neutral atoms. They cover a range of compressions
between 0.1 and 0.5, including the critical compression
(0.27). The stabilization free energy gained in increasing
the free electron charge density is larger than the energy
required to bind the 3p electron. Here it would be useful
to know where the curve for a fluid containing neutral
Al,, molecules would be. Because we cannot make a reli-
able calculation for a fluid containing molecules, we can
only give the following imprecise argument. In the most
stable molecular state, the binding would be increased
by approximately 1.5 eV per atom involved. Thus a fluid
having a concentration zo of neutral atoms in molecular
form would have a free energy lower by 0.1zo Ry/atom
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FIG. 1. Total Helmholtz free energy per atom of Al at T' =
1.5 eV as a function of the compression p/po. Curve A is for
the unstable fluid with Z; =0, 1, and 2, in the free electron
density range 1/64 < /no < 1/32; curve B is for the fluid
with Z; =1, 2, and 3, with 1/16 < ©/ne < 1/4; curve C
is for the fluid with Z; = 3, with 1/1.5 < ©/no < 1. The
average-atom model [see Eq. (34)] results are shown as solid
squares (the ASM 3s) and as open circles (the ASM 2p). Note
that ASM 2p merges with MSM in curve C.
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than the fluid described by curve A for a fixed ioniza-
tion. Obviously, such a conclusion holds only if all the
other contributions to energy are roughly the same. This
lowering would be approximately of 0.1 Ry/atom for any
state shown in curve A. This is not enough to stabi-
lize these states with respect to those of curve B. Thus
curve B probably represents the actual fluid state in the
range of compressions 0.1-0.5, at a temperature of 1.5
eV. Finally, curve C corresponds to a fluid where only
the Z; = 3 configuration exists. In this part of the curve,
the average ionization Z* is also 3 and the multispecies
model (MSM) and the average-structure model (ASM)
become equivalent. The fluid states in C are similar to
those of liquid Al under normal conditions. For the rea-
sons mentioned above, the model is not able to describe
the transition from curve B to curve C.

The ASM results are also shown in Fig. 1 as open
circles, joined where relevant by a dotted line. It ap-
pears that the ASM free energies are lower than those
of the MSM. Although the Mermin-Kohn-Sham equa-
tions for the average atom in the electron gas should, in
principle (i.e., if they were solved exactly with the exact
exchange-correlation energy functional and in the same
external potential), give the same electronic free energy
as the multiconfigurations equations, there is no reason
to believe that this is the case in practice. The main rea-
sons for the differences are (i) the inclusion of an effective
degeneracy D,;, as discussed below, in the ASM where
bound electrons are confined to a single atomic volume 2
of the average ion; (ii) the correction of the electronic en-
tropy in the MSM as discussed in Eq. (8); (iii) the use of
a LDA-exchange-correlation-functional that favors dou-
ble occupancy of bound states as T goes to 0 K; (iv) the
ASM and MSM differ in the treatment of the ion-ion in-
teractions, which depend on Z; in the MSM and Z* in
the ASM; and (v) the difference in the estimates of Z*
in the two models implies that, for the same 7, we are
in fact looking at two different matter densities p in the
two models.

We comment further on some of these issues. In the
ASM, the DFT calculation deals with a single “aver-
age” ion whose structure may be specified by its highest
bound state (e.g., the ASM 2p has no n = 3 shell). The
electronic levels are populated according to Fermi-Dirac
statistics. An effective degeneracy D,,; is attributed to
each bound level n,! in order to exclude from the bound
charge the part that extends outside the average atomic
sphere of volume €. This degeneracy is

D, =2(2l + 1)/Q |pnl(r)|?dr, (34)

where ¢,,[(r) is the wave function of the n,! bound state,
having an energy €,;. The average ionization is then
Z* = Z — ZpiDnifrp(€nt). Then a single average pair
potential is built using the same technique as described
in the MSM case and the HNC equation is solved for the
single species fluid. As shown in Fig. 1, the total free
energy resulting from this model turns out to be lower
than that of the MSM. The ionization Z* of the ASM is
controlled only by the electronic distribution of a single
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average ion in an average cavity, while the Z* of the MSM
is constrained to depend on both the electronic and ionic
distributions. For instance, for @ = ny/4, one finds Z*
= 1.953 (ASM) and 1.479 (MSM); for 7@ = no/8, Z* =
1.406 (ASM) and 1.202 (MSM). A direct consequence is
that, for the same electron density, the resulting matter
densities are different in the two models.

In Fig. 2 we have plotted the total Gibbs energy
G = F + PX) versus pressure, also shown in Table III,
for the three regimes of ionization. Consider the equilib-
rium between these “possible” phases. The crossover of
the curves relative to “phases” B and C would determine
the values of the thermodynamic variables at the transi-
tion. Because the model cannot produce the entirety of
the curves, curve C of Fig. 2 needs to be extrapolated
as indicated. The intersection with curve B occurs for
a pressure PQo = 0.06 Ry (80 kbar) and compressions
between 0.27 and 0.40. It is remarkable that the lowest
compression corresponds closely to the critical density.
The variations of pressure (%) with density are shown
in Fig. 3. The average number of free electrons per atom
is expected to increase rapidly from 1.2 to 3 in this inter-
val, suggesting some form of a plasma phase transition
[4]. If the ASM were used, the pressure versus compres-
sion curve is smooth, as shown by the dotted curve pass-
ing through the open circles. Here again we note that
the average-structure DFT becomes equivalent to curve
C for compressions greater than 0.66. The pressure ver-
sus compression predicted by the Sesame Library (tables
of data published by the Los Alamos Scientific Labora-
tory) is shown by squares in Fig. 3.

Coherently with the previous discussion of curve A,
which was calculated without allowing for molecular
structures such as Al,, we see in Fig. 2 that B and A will
never cross. The most probable situation is that B will
intersect an unknown curve describing the Gibbs energy
of a complex fluid containing ions, atoms, and molecules,
for a compression lower to 0.27.

Figure 4 shows the average ionization Z* as a func-
tion of the compression for the MSM and ASM. These
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FIG. 2. Total Gibbs free energy per atom of Alat T = 1.5
eV as a function of Py, i.e., (pressure) X (normal atomic
volume) of Al. Curves A-C and the ASM 3s results at 7=1.5
eV are shown in the top part. Cext is the extrapolation of
curve C to cover the discontinuity due to the ionization of
the 3s level. Results for T = 5 eV are given in the lower half.
Here the unstable phase (analog of curve A) does not exist.

F. PERROT AND M. W. C. DHARMA-WARDANA 52

PQ,

(Ry/at.)

/c
(5eV)

1.0

0.8 , Con

0.6 e

04 B//L /

B
02 / ; (1.5eV)
7 / |

00 02 04 06 08 1.0
P/Po

FIG. 3. P as a function of compression. Curves B and
C are as in Figs. 1 and 2. The open circles are ASM 3s data
points, while the solid squares are from the Sesame tables,
for T = 1.5 eV.

Z* values enter into the electrical conductivity (Fig. 5)
calculated in the three regimes. The resistivity for the
unstable regime A is remarkably constant. The values
in curve B are valid for p/po < 0.27 and those of curve
C are reliable everywhere. An interpolation between the
two later portions of curve is possible and gives a reason-
able estimate of R. The ASM resistivity is also shown.
In the lowest range of compressions, it is lower than the
MSM resistivity. In Table IV we compare the difference

Z*
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FIG. 4. Average ionization Z" as a function of compres-
sion for T = 1.5 and 5 eV. Points in discontinuous ASM
branches are joined by dashed lines merely to guide the eye
(the long-dashed line is 5 eV and the short-dashed line is 1.5
eV). Solid curves are from the MSM approach. Three data
points (open hexagons) are from a Thomas-Fermi model [37]
at 5 eV.
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FIG. 5. Electrical resistivity of expanded Alat T = 1.5 eV.
The curves and data points are as in Fig. 1.

between the pseudopotential and T-matrix results of the
resistivity, using the ASM approach. The MSM pseu-
dopotential resistivity was given in Table III.

2. T = 5 and 10 eV

Here we explore the same density range (compression
K = p/po) as before, but at higher temperatures. The
main difference between the low temperature (T = 1.5
eV) case is that the phase A, containing neutral Al, is
totally out of the picture and there is no longer any ex-
tended coexistence region between phases B (a mixture
of Al** Z; =1, 2, and 3) and phase C' (which has only
Z; = 3). However, it turns out that at T = 5 eV there
is a coexistence point in that the pressure versus density
curves overlap at PQ, = 0.45 Ry/atom. In Fig. 2, lower
part, we show how the Gibbs free energy calculated for
phases B and C varies with pressure, calculated using the
MSM. There is a region where the calculation cannot be
done due to the disappearance of 3p and 3s levels. How-
ever, extrapolation of curve C as shown in the figure can
be carried out. Thus, in Fig. 3 we see how the plasma
phase transition at T' = 1.5 eV transforms itself to the
single coexistence point at 7' = 5 eV and about x ~ 0.45.

TABLE IV. The average ionization Z* calculated using an
appropriate model is tabulated as a function of temperature
and electron compression ©/no. Thus the material compres-
sion p/po is (3/Z*)(/no). The row labeled 10°TF gives Z*
at 100 eV calculated using a simple Thomas-Fermi [37] model.

fi/no  1/32 1/16 1/8 1/4 1/2 1 2
T (eV)
1.5 1.160 1.176 1.202 1.479 3.000 3.000 3.000
5.0 1.625 1.675 1.718 1.948 3.000 3.000 3.000
10 2.260 2.310 2.362 2.455 3.027 3.023 3.018
40 6.241 5.883 5.574 5.204 5.107 5.193 5.140
100 10.29 9.966 9.585 9.198 8.665 8.272 7.978
10>°TF 9.22 8.21 8.40 7.96 7.52 7.11 6.78
400 12.88 12.79 12.67 12.48 12.16 11.88 11.57
1000 13.00 12.98 12.97 12.96 12.94 12.92 12.84

In Fig. 6 we compare the variation of P2 as a function of
the compression k, with T = 5 and 10 eV, together with
the predictions from the average atom (i.e., the ASM)
calculations. Here the ASM used is identified by the last
bound state that exists in the average structure: ASM
3p, ASM 3s, and ASM 2p. The ASM 2p corresponds to
Z* = 3 and hence merges with phase C calculated using
the MSM.

It is interesting to see how these differences (between
the different theoretical models) appear in the predicted
ionization Z*. In the Saha model (as implemented by
Kerley [10]), with T=1.5, 5, and 10 eV, at a free elec-
tron density @ = no/32, where ng is the electron den-
sity in solid Al at room temperature, Z* is predicted to
be 0.345, 0.469, and 1.44, respectively. The MSM gives
Z*= 1.160, 1.625, and 2.260, respectively, showing the
well known limitations of the Saha model. In Fig. 4 we
compare Z* for the ASM and MSM at T=5 eV. The
Z* from ASM contains several discontinuous segments.
Thus ASM 3p ionization decreases with increasing com-
pression, jumps abruptly to the ASM 3s curve where R
is rather flat, and then joins the MSM curve to give an
Z*=3. For the higher compressions, we also show (open
hexagons) the Z* obtained from a popular Thomas-Fermi
model [37]. These differences in the predicted Z* and
the state properties of the fluid reveal themselves in the
transport properties as well. Thus, in Fig. 7 we show
the electrical resistivity as a function of compression for
T = 5 eV (lower panel) and T = 10 eV (upper panel).
The large (unphysical) discontinuities in the ASM val-
ues of R correspond to those of Z* shown in Fig. 4. In
Table IV we compare the pseudopotential and T-matrix
evaluations of R, within the ASM model, at 7' = 5 and
10 eV. Clearly, prediction of plasma transport properties
with confidence requires detailed attention to the atomic
physics of the plasma.
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FIG. 6. PQ as a function of compression at 7' = 5 and 10
eV. Here Q is the average volume per atom. The average-atom
results (ASM) for 3p, 3s, and 2p are given as data points
for comparison with the full curves obtained from the MSM
approach.
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FIG. 7. Electrical resistivity of Al as a function of com-
pression using pseudopotentials. Upper panel, T' = 10 eV;
lower panel, T' = 5eV. The average-atom model resistivities
are indicated by data points labeled ASM 2p and ASM 3p.
The dotted line through the ASM points is a guide to the eye.
The solid line is the MSM resistivity.

3. Compressed and shocked plasmas

The higher compression regime (k > 1) is relatively
simple up to about £ = 3 since the ionization state of
the Al plasma is essentially Z*=3. Thus the MSM and
the ASM merge into each other. For k > 3 we again get
into regions where the average number of free electrons
per ion becomes fractional due to the formation of bands
and pressure ionization at low temperatures. The pre-
vious analysis cannot be applied without modification,
although the idea of using several neutral pseudoatoms
to formulate the theory might still be relevant. However,
most shock experiments and laser pulse experiments re-
main in the regime of k < 3 and hence we do not dis-
cuss these extreme high pressure regimes here. Tables
IV and V provide a “bird’s-eye view” of the variation of
the average ionization and resistivity of expanded and
compressed Al plasmas as a function of temperature and
density. In practice, high compression experiments that
satisfy the conditions of the shock Hugoniot are of great
interest since the compression and the temperature of the
plasma can be connected via the EOS. At high compres-
sions and high temperatures the details of the ion-ion
structure factor become unimportant as far as the trans-
port properties are concerned. But now the full 7" matrix
discussed in our previous studies [29] becomes necessary.
Suitable calculations for the standard shock Hugoniot are
given in Table VI.
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TABLE V. Electrical resistivities R (u cm), calculated
using the ASA model and showing (where necessary) the re-
sults from the pseudopotential (labeled w) and the T-matrix
(labeled t) versions of the scattering cross section (see the
text). The MSM-pseudopotential resistivities were given in
Table III. Nonconvergence of the calculations is indicated by
NC. Note that at T = 5 eV, for 1/16 < ®/no < 1/4, the
w resistivity is discontinuous due to the ionization of the 3p
state, while the t resistivity is continuous.

©i/no  1/32 1/16 1/8 1/4 1/2 1 2
T (eV)
1.5w NC 2133 708 315 127 35.3 17.0
1.5t 2310 1662 863 423 155 41.2 35.8
5.0w 608 371 767 273 165 52.1 18.1
5.0t 946 772 593 401 243 70.8 479
10.0w NC 395 304 252 168 59.0 20.4
10.0t 633 534 452 357 279 108 76.1

40.0t 420 252 280 238 187 153 120

100t 262 189 150 132 114 97.5 81.0
400t 70.6 64.5 58.2 519 454 39.2 333
1000t 21.9 20.4 189 174 16.0 14.5 13.0

IV. CONCLUSION

We have described a first-principles method of calcu-
lating the thermodynamics (e.g., ionization balance and
equation of state) and transport properties of plasmas
for a very wide range of densities and temperatures. The
regimes include expanded plasmas at low temperature
and densities where atomic and ionic species can exist,
as well as shock compressed and other plasmas. We have
used an analytical approach rather than a molecular dy-
namics (MD) approach, although the ideas can be easily
adapted to a simulations approach. That is, once the em-
bedding energies and pair interactions were given, MD
methods can be used for the calculation of thermody-
namics and other properties. The present theory reduces
to the conventional Saha model under the following ap-
proximations: ion-ion interactions are neglected, the to-
tal energy of any ionic species is replaced with its limit
at infinite dilution, and electron density effects are de-
scribed by some form of continuum lowering. The main
features of the present approach are (i) instead of us-
ing semi-empirical, quasichemical, hard-sphere-type de-
scriptions of density effects, all the electronic energies
required are self-consistently calculated using DFT con-
cepts; (ii) the ion-ion interactions, calculated from out-
puts of the previous step, are explicitly used in the to-
tal free energy, which is minimized to get the concen-

TABLE VI. Electrical resistivity R (u£2 cm) along the
shock Hugoniot of aluminum Z* ~ 3 with the initial con-
ditions for the shock exactly at the normal solid Al density at
300K. The compression is p/po.

T(eV) 025 050 1.00 250 5.00 10.0 15.0
p/po  1.57 1.70 1.89 2.26 2.59 2.97 3.22
R 31.57 32.65 33.75 36.08 43.67 61.57 74.38
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trations of the various species; and (iii) ion-ion correla-
tions are treated via the structure factors obtained from
the HNC integral equations. Possible molecules or clus-
ters are not introduced in the present description. This
could be done without formal difficulties, but the numer-
ical determination of the interaction energy of molecules
or clusters in the plasma is a complex problem within
a first-principles approach. The present model requires
that different charge states can be identified. This is
not possible when there are bound states (or quasilo-
calized continuum states) that are not contained inside
the Wigner-Seitz sphere around each nucleus. In these
regimes there are not just bound electrons and free elec-
trons, but also “hopping electrons” that experience the
potential of two or more nuclear centers and single-center
models and simple metal models may not be adequate.
Regimes corresponding to the delocalization of the 3s
and 3p levels were explicitly pointed out in this study.
At higher compressions and temperatures, not discussed
in this work, there would be other regimes corresponding
to the delocalization of 2p and 2s levels where the present
type of theory needs further modifications.

The most important approximation made in this work
is the use of a single-center neutral pseudoatom model
with spherical boundary conditions and the restriction
to integer ionization states. In order to assess the limita-
tions of such an approximation it is necessary to compare
the results with those from a many-electron finite temper-
ature calculation for many atoms dynamically optimized
from some set of random configurations. Such a calcula-
tion is feasible for a limited number of atoms using, e.g.,
the Car-Parinello method. A particularly stringent case
would be molten Si, where many authors believe that
bond directionality and covalent bonding persist locally
in the liquid state. Such a comparison of our method,
with a Car-Parinello calculation by Stitch et al. [38], us-
ing 64 atoms of Si in the simulation supercell was given in
our study in [23(a)]. Those results show that the calcu-
lations based on the neutral Si-pseudoatom method are
probably as good as or better than the supercell multi-
center calculation where the latter yielded a statistically
very noisy ion-ion structure factor S(k). Liquid carbon
was also studied and compared with the 54-atom multi-
center Car-Parinello-type simulation by Galli et al. [38].
In effect, even in these extreme cases of group-IV ele-
ments at their melting points, the methods presented in
this paper seem to be very useful in providing reliable
results. This makes us confident that the plasma phase
transition found in our calculations is well beyond any
error limits of the single-center NPA approximation used
here and represents the genuine physics of a mixture of
atomic ions (i.e., no molecular states are involved).

Thus in the numerical example presented for Al at
T = 1.5 eV, we have identified a domain of densities
(0.35 < p/po < 0.9 approximately) where an unstable
state exists; this state results from a mixture of neutral
atoms and ions with charges 1 and 2. It has a weak aver-
age ionization and a practically constant resistivity. Two
stable regimes correspond to ions with charges 1, 2, 3 for
0.15 < p/po < 0.5 and charge 3 only for 0.5 < p/po < 1.
A reasonable picture of the evolution of the state of the
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plasma as a function of the density can be obtained by
assuming a transition between these two regimes in the
range of compressions 0.27-0.40 at a pressure of 80 kbar.
The rapid increase of ionization between the low ioniza-
tion phase with Z* = 1.2 to the high ionization phase
with Z* = 3, together with a rapid decrease of the re-
sistivity, may suggest a plasma phase transition in the
T =1.5 eV Al plasma studied here. A sampling of re-
sults for a wide range of plasma conditions was given,
the central theme of the paper being that calculations of
transport properties of plasmas with confidence require
detailed attention to the atomic physics of the plasma.
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APPENDIX A: DENSITY DERIVATIVE OF L;

In this appendix we give an explicit form for [;, the
density derivative of L;, defined in Eq. (11)

L= +L?,
LY = mi(r) ® Vi(r),

1
LY = ——ni(r) ®

3 ® [vi(r') — ms(r')],

v —r'|

where n;(r) =7 — v;(r) and l; = W6 L; /7.

1. Density derivative of the first term Lfl)

The charge deficit 7;(r) associated with the cavity of
radius R; is zero for r < R; and becomes 7 for » > R;.
Thus, when 7 changes by é7, R; changes by § R; and 7;(r)
changes in magnitude and extension. Thus the density
derivative of Lgl) is

—nV;(R:)8Q + ni(r) ® Vi(r)(@/om) + ni(r) ® 6Vi(r).
Using Eq. (13), this becomes
—fi(67/7) + ni(r) ® SVi(R;).

The variation §V;(R;) can be calculated as follows, start-
ing with

Vilr) = =Zi/r + (') + Ama()] @ e = 7,

(A1)

where An;(r) contains a bound-electron density n;(r)
and a free electron density displacement Ang;(r). The
bound density can be assumed not to change under the
variation 6. On the other hand, the change §Ang;(r)
can be related to the pseudopotential w; of the ion. Thus
we have, in Fourier space,

8Vi(q) = v(q)é{I(q, 7)[w:(q) + v(q)vi(9)]}

where v(q) = 47 /g2 is the Coulomb potential and II(g, 77)
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is the interacting electron-gas response function
H(q7 ﬁ') = HO(qa ﬁ)/g(q’ T")’
£(g,m) =1 —{v(q) + X(0)}o(g, 7).

Here Ilp(g, ™) is the Lindhard function at density @ and
at the temperature T of the electrons. The finite tem-
perature local field correction X(q) is a constant in the
g = 0 limit, consistent with the local density approxi-
mation to the exchange and correlation used in the DFT
calculations [21]. Then, defining

K(q) = [n/Ilo(q,m)][é1Lo(g, )/ 67],
we can rewrite 0V;(q) as
Vi(q) = v(9){K(q)Anyi(q)(67/7) + T(g, m)v(q)dvi(q)}-

It can be verified that
. _ 9
(}E’I})”(Q)K(Q) = —na_ﬁ[X(O) — 1/Too],

where Ilg is IIo(¢ = 0,7). For a neutral pseudoatom the
charge density Ang;(r) integrates to zero, v(q)II(q, ™) is
finite at ¢ = 0, and dv;(q) behaves like g2. Then
7 ® Vi(r) = —(Z2/5R;)(dn/n).
Hence, introducing the notation
U(q) = —v(g)m(q), m(q) = —1I(g,R)v(q)vi(a),
U(q) = v(a)K(9)Ansi(a) + U(q),

we can evaluate 7;(r) ® 6V;(R;) needed in Eq. (A1) as

ni(r) @ SVi(Ri) =

2. Density derivative of sz)

The expression for ng) written in ¢ space can be used
to write its density derivative in the form Ti(q) + T2(q),

T, =6 {ﬁ lim v(g)ui(q)[L +v(Q)H(q,ﬁ)]} /2,
T, = %/g%&{yi(q)v(q)ui(q)[l + v(g)(q, m)]}.

These can be rewritten as

Ty = —5[ZA{X(0) - 1/Tao}}/2 + I,

h= [ Sen@lv@m(e) + U,

T, = %/é%Vi(q)v(q)w(q)v(q)K(q)H(q’ ﬁ)%ﬁ'

F. PERROT AND M. W. C. DHARMA-WARDANA 52

Further manipulation gives, for the first term in T3,
—(1/2)Z:n[X (0)(1 + Yx(0)) — (1 + Tr1e)/Mo0](67/7),

where we have defined

O(IIgs
YT, = ﬁnoo(a%,
_10X(0
TX:::(O) = ﬁX(O) 1—5";—).

The integral I; can be transformed by considering suc-
cessively the two contributions to the change in the mag-
nitude and extension of the cavity v;. The change in
magnitude gives

dq on
[ s @b@ula) + U@
and can be regrouped with the term in 67/7 in T3. The
change in extension of v; manifests as a change 6R; in
the cavity radius and gives the contribution

3. Complete expression for the derivative of L;

Putting together the results of the two previous sub-
sections, we obtain

L =1+ 1,

I} = —fi + (1/2)Z:n[X (0)(1 + Tx(0))
—(1 + Yria0) /Too],

I =/%[Anﬂ(q)——;H(q,ﬁ)w(q)v(q) vi(q)v(9)K(q)-

In obtaining this result, use has been made of the can-
cellation of —622/5R; with (2m)~2 [ dqui(q)v(q)vi(q).

APPENDIX B: CORE-CORE REPULSIVE
POTENTIALS

Consider two ions a and b located at positions R; and
R;, in an electron gas of density . The interionic dis-
tance |R; — Rj| is R. The interaction between these ions
involves Coulomb forces between the two nuclei, between
the bound (i.e., core) electron, and between displaced
free electron distributions, as well as cross terms and
exchange-correlation effects. However, the most difficult
issue is to deal correctly with the changes in the kinetic
energy contributions to the interaction. In the following
we treat this problem using Kohn-Sham concepts.

1. Notations

We use the following notation in this appendix. ng; =
nq(|r — Ry|) is the displaced electron density around the
ion a. Also, n, means n,(r). The free energy func-
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tional containing the kinetic and exchange-correlation-
contributions is denoted by G[n + 71]. We define

AG[n + 7] = G[n + 7] — G[7|,
fui ® gt = [ drfulle =~ Ral)as(lr — Ral),
rl O np = /dr'|r’ —r+ R Inp(|r' — Ry)).
We also define the functional derivative
AG'[n + 7] = 6G[n +7)/én(r),

so that the Euler form of the Kohn-Sham equation in the
external potential Vey is

AG'n+7) — AG'[A] + Vexe + 7 1 @n = 0.
Thus, for the ion a alone, the above equation becomes

AG'[ng; +7) — AG'[R] — Za/ri + 77 ® ngi = 0.

2. Total pair interaction

The total interaction between the pair of ions a,b im-
mersed in the electron gas can be written as a sum of
contributions from the nuclear-nuclear Coulomb interac-
tion Z,Zp/R, other electrostatic effects Agg, and con-
tributions from kinetic energy and exchange-correlations
effects Ageqxc. Thus

Yab = ZaZb/R + Agps + Ake+x<:,

Ake-l»—xc = AG[nai + Y] + ﬁ]
—AG[nq; + 7] — AG[ng; + 7,

Ags = [{—gg ® np; + 1Tlai® L anj} + {355 ] .
T; 2 T

The displaced electron densities ng;, etc., can be written
as a sum of a core-electron density c,; and a free-electron
density f,;. It is reasonable to assume that the free elec-
tron displacement f,; due to the ion is such that, e.g.,
fai K cqi + T, etc., everywhere in space. Hence AG may
be expanded in powers of f; j = fa; + fvj, about the den-
sity ¢;,; + @ = cqi + cpj + T, which is a sum of the core
electron densities and the density of the uniform electron
gas. Thus we have, formally to second order,

AG[nei + nyj + 7] = AG® + AGM + AG?),
AGO = AGIc;; + 7,
AGY = f; ; ® AG'[c; ; + 7),
AG® = (1/2)(fi;) ® AG"[ci; +7) ® (fi)-

At this point it is useful to establish a link with second-
order perturbation theory where the bare ionic potential
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is replaced by a weak pseudopotential w:

{’_(Zi/"'i) + % ® Ca,i} = Wg;.

Further, the pseudopotential approach replaces the
AG'[cqat + 7] and AG"[cyt + 7] type terms by AG'[R]
and AG"[7], leading to the Kohn-Sham equation for the
free electron displacement f,;. Thus we have

1
AG”[ﬁ] ® fai + Was + ; © fai =0

and a similar equation for f,;. Hence we have

fai ® AG"[R] ® fo;
1 a
= [—wbj ® fai/2 — fai ® 2 © fbj] + 933

Using the second-order expansion of AG[ng; + np; + 7
in the expression for ¥, and using the pseudopotential
forms, we get, for the total pair-interaction,

Uopb = ZuZp/R + 0G + AE,
where

6G = AG[C,',]' + ﬁ] — AG[Cai + ﬁ] - AG[ij + ﬁ],

1

AS:i[ bj ® fai —

27,

T

® cpj

1 Y
+ij®;®cai:| +5[i3,-.

3. Repulsive core-core interaction

The standard metallic interaction in second-order per-
turbation theory is

1
¢a.b = Z;Z;/R+ —2‘[’U)bg ® fai + Wa; ® fbj]-

Hence the repulsive interaction is obtained as @qop =
Wap — ¢ab’ with

(ZaZo — Z22%)/R + 6G + Ay, (B1)

1]

Pabd

Ap =

27 1 o
[ T“@cbj+cb,-®;®cai] + (182

%

N | =

This result still involves the kinetic and exchange-
correlation-correction term §G. A more practical form
of the core-core repulsion can be obtained as follows. We
assume that the core-core repulsion is not sensitive to the
details of the functional G[n], in the sense that we can
evaluate §G from a local functional. A similar method
has been described elsewhere [39,40] This means that we
can do local expansions of the kinetic energy. We divide
the space into a left half space (L), containing the ion a,
and a right half space (R), containing the ion b, by the
perpendicular plane passing through the midpoint of the
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bond. In the space (L), the core-electron density cp; is
everywhere smaller than 7. Expanding §G, we have

5G = / dres; {AG [cai + 7] — AG'[A]} + / (258,
(L) (R)

The core densities are rigid and unaffected by the part of
the potential due to the free electrons, so they approxi-
mately satisfy a Kohn-Sham equation of the form

AGI[CM' + ﬁ] - AGI[ﬁ] = —Vai,

—Vai = Za/Ti - (1/7‘) ® Cqi-

It follows that

5G = —Cqi @ ‘/bj + / dr[caiVbj — ijVm'].
(L)

Since the core-electron density co; is such that
Cai = —(47")—1V2Vai + Zaa(r - Ri)a
we have

0G = —co; @ Voj + Z,Vu(R) + Gy,

Gr = (47()—-1/ dr[—VijZVai + Va,-Vszj].
(L)

The term in §(r — R;) does not contribute because R;
is not in the half space (L). The volume integral on the
half space can be reduced to a surface integral on the
midplane X. Then the f( 1) term becomes

—(4m)1 / ds[{VsdVa(r)/dr} + {a © B}].
b))
The integrations are now straightforward and we have
0G = —ca; @ Voj + Z,Vu(R) + (R/4)Va(R/2)Vi(R/2).

Inserting this result into Eq. (B1) gives

bab = —(Z2Z} /|R) + (R/4)Va(R/2)Vs(R/2), (B2)

Va(R) = —(Za/R) + / dr'ca(r') /IR — 1’|

and an analogous expression for V;(R) holds. The behav-
ior of the core-repulsion potential in the small and large
R limits is easily verified to be correct. Thus ¢, tends
to (ZoZy — Z2Z})/R for R — 0, so that the total in-
teraction ¥, reduces correctly to Z,Z;/R. For large R,
since V,(R/2) goes to —2Z} /R, the repulsive potential is
totally screened, as it should be.
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APPENDIX C: CONDITION FOR THE
EXISTENCE OF Al,, n > 1, MOLECULES

We wish to obtain an estimate of the critical den-
sity merit of the electron gas for which the binding en-
ergy of Al, becomes zero, at zero temperature. Thus no
molecules would exist for n > ncy; even at zero tem-
perature. We use a model that, when applied to the
embedding of the H, molecule [35], was found to give
good agreement with more exact calculations. We as-
sume that the electron density effect, i.e., the change in
the energy £ due to the immersion in the electron gas,
with the bond length held fixed at R, is well approxi-
mated by the change in the model energy &,(R,7) of
a suitable “model molecule.” This pseudomolecule is an
impurity in jellium subject to an external potential that
corresponds to the spherical part of the potential of Al,
around the midpoint of the bond. Thus

Vi(r,R) = —22*/(R/2), r < R/2 ,
Vi (r,R) = —2Z* /v, T > R/2.

Here r is the distance measured from the midpoint of the
bond. Thus we write

8Dy, = E(R,0) — £(R, ) = Em(R,0) — £, (R, 7).

The spherical symmetry of the model molecule makes
it possible to easily evaluate the energy using existing
one-center DFT codes, with Z* = 3 for Al. The model
is exact for large r but the charge pileup close to the
ion centers is not accurately determined. We can cor-
rect for this error by adding to &,,(R,7) twice the cor-
rection (one for each ion of Al;) that would be pro-
duced in the single-atom embedding energy if an exter-

nal potential V;") = V,,, (r, R)/2 were used, with half the
value of V,,, defined previously, since we are now con-
cerned with one ion. Then the required energy correc-
tion is E,(0,7) — E,(,})(R, 7), where E,(0,7) is the en-
ergy of an Al atom in jellium while E{Y) is that of a
fictitious ion with the external potential V,$,”. Note that
Ey(00,0) = E4(o0,) = 0. Thus we can express the
change in the binding energy due to immersion of Al, in
the electron gas as

6D(R,7) = 6D,, — 2[EYV(R,0) — EXN(R,7)].

We have calculated § D(R,7) at the equilibrium distance
of the free molecule for a range of electron densities and
found that the binding energy of Al, becomes zero at
7 =~ 0.0008 a.u., i.e., for a density @ =~ ng/32, where ng is
the electron density (r; = 2.07 a.u.) of metallic solid alu-
minum under normal conditions. We conclude that for
N > Nerity, With Ny = n0/32, no molecule formation oc-
curs in Al plasma. For higher temperatures, the binding
energy is smaller and hence molecule formation is even
less probable.
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